212 research outputs found

    Simplified conservative testing method of touch and step voltages by multiple auxiliary electrodes at reduced distance

    Get PDF
    Grounding systems (GSs) must be tested periodically in order to maintain the touch voltage (TV) and step voltage (SV) below a safe value in all of the zones of the installation. Measurements of the ground resistance and of the TV and SV are typically done by the fall-of-potential (FoP) method, locating the auxiliary current electrode at remote distance to test the effective behavior of the GS. In urban areas, it could be very complicated or impossible to install the auxiliary current electrode as required, not having area around with sufficient accessibility. At this aim, this paper describes a methodology of using multiple current electrodes at short distances, modifying the classic FoP practice, so that the measurements of TV and SV are always conservative. The adequacy of a GS is verified if the values of the TV and SV, tested inside and in the vicinity of the GS, are below the permissible limits, regardless if they are true or conservatively increased. Thus, the measured TV and SV by the suggested method, always conservative, allow verifying the adequacy of GSs, in the cases where it is impossible to locate the remote auxiliary electrode

    Grounding System Adequacy of HV/MV Substations in Areas With Reduced Accessibility

    Get PDF
    The adequacy of grounding systems has to be verified periodically in the operational time. With urban development and buildings growth adjacent to power systems as HV/MV substations, it is very rare to have area around with sufficient accessibility for installing the potential and current electrodes. This paper discusses a safety criterion to verify the effectiveness of a grounding system. This criterion suggests conservative tests for both ground potential rise and touch voltages and step voltages that allow to verify the grounding systems effectiveness in areas with reduced accessibility and to monitor its evolution in the time

    An Adaptive Overcurrent Coordination Scheme to Improve Relay Sensitivity and Overcome Drawbacks due to Distributed Generation in Smart Grids

    Get PDF
    Distributed Generation (DG) brought new challenges for protection engineers since standard relay settings of traditional system may no longer function properly under increasing presence of DG. The extreme case is coordination loss between primary and backup relays. The directional overcurrent relay (DOCR) which is the most implemented protective device in the electrical network also suffers performance degradation in presence of DG. Therefore, this paper proposes the mitigation of DG impact on DOCR coordination employing adaptive protection scheme (APS) using differential evolution algorithm (DE) while improving overall sensitivity of relays . The impacts of DG prior and after the application of APS are presented based on interconnected 6 bus and IEEE 14 bus system. As a consequence, general sensitivity improvement and mitigation scheme is proposed

    Advanced Control of the dynamic voltage restorer for mitigating voltage sags in power systems

    Get PDF
    The paper presents a vector control with two cascaded loops to improve the properties of Dynamic Voltage Restorer (DVR) to minimize Voltage Sags on the grid. Thereby, a vector controlled structure was built on the rotating dq-coordinate system with the combination of voltage control and the current control. The proposed DVR control method is modelled using MATLAB-Simulink. It is tested using balanced/ unbalanced voltage sags as well as fluctuant and distorted voltages. As a result, by using this controlling method, the dynamic characteristics of the system have been improved significantly. The system performed with higher accuracy, faster response and lower distortion in the voltage sags compensation. The paper presents real time experimental results to verify the performance of the proposed method in real environments

    Elevator regenerative energy applications with ultracapacitor and battery energy storage systems in complex buildings

    Get PDF
    Due to the dramatic growth of the global population, building multi-story buildings has become a necessity, which strongly requires the installation of an elevator regardless of the type of building being built. This study focuses on households, which are the second-largest electricity consumers after the transportation sector. In residential buildings, elevators impose huge electricity costs because they are used by many consumers. The novelty of this paper is implementing a Hybrid Energy Storage System (HESS), including an ultracapacitor Energy Storage (UCES) and a Battery Energy Storage (BES) system, in order to reduce the amount of power and energy consumed by elevators in residential buildings. The control strategy of this study includes two main parts. In the first stage, an indirect field-oriented control strategy is implemented to provide new features and flexibility to the system and take benefit of the regenerative energy received from the elevator’s motor. In the second stage, a novel control strategy is proposed to control the HESS efficiently. In this context, the HESS is only fed by regenerated power so the amount of energy stored in the UC can be used to reduce peak consumption. Meanwhile, the BES supplies common electrical loads in the building, e.g., washing machines, heating services (both boiler and heat pump), and lighting, which helps to achieve a nearly zero energy building

    Microgrid working conditions identification based on cluster analysis – a case study from Lambda Microgrid

    Get PDF
    This article presents the application of cluster analysis (CA) to data proceeding from a testbed microgrid located at Sapienza University of Rome. The microgrid consists of photovoltaic (PV), battery storage system (BESS), emergency generator set, and different types of load with a real-time energy management system based on supervisory control and data acquisition. The investigation is based on the area-related approach - the CA algorithm considers the input database consisting of data from all measurement points simultaneously. Under the investigation, different distance measures (Euclidean, Chebyshev, or Manhattan), as well as an approach to the optimal number of cluster selections. Based on the investigation, the four different clusters that represent working conditions were obtained using methods to define an optimal number of clusters. Cluster 1 represented time with high PV production; cluster 2 represented time with relatively low PV production and when BESS was charged; cluster 3 represents time with relatively high PV production and when BESS was charged; cluster 4 represents time without PV production. Additionally, after the clustering process, a deep analysis was performed in relation to the working condition of the microgrid

    PI and fuzzy control strategies for high voltage output DC-DC boost power converter – hardware implementation and analysis

    Get PDF
    Abstract: This paper presents the control strategies by Proportional- Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra highvoltage (EHV) DC-DC boost power converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter is realized and experimental tasks are set out with digital signal processor (DSP) TMS320F2812 under different perturbation conditions. Observed set of results is provided and shown good conformity with developed hypothetical predictions

    Intelligent energy management based on SCADA system in a real Microgrid for smart building applications

    Get PDF
    Energy management is one of the main challenges in Microgrids (MGs) applied to Smart Buildings (SBs). Hence, more studies are indispensable to consider both modeling and operating aspects to utilize the upcoming results of the system for the different applications. This paper presents a novel energy management architecture model based on complete Supervisory Control and Data Acquisition (SCADA) system duties in an educational building with an MG Laboratory (Lab) testbed, which is named LAMBDA at the Electrical and Energy Engineering Department of the Sapienza University of Rome. The LAMBDA MG Lab simulates in a small scale a SB and is connected with the DIAEE electrical network. LAMBDA MG is composed of a Photovoltaic generator (PV), a Battery Energy Storage System (BESS), a smart switchboard (SW), and different classified loads (critical, essential, and normal) some of which are manageable and controllable (lighting, air conditioning, smart plugs operating into the LAB). The aim of the LAMBDA implementation is making the DIAEE smart for energy saving purposes. In the LAMBDA Lab, the communication architecture consists in a complex of master/slave units and actuators carried out by two main international standards, Modbus (industrial serial standard for electrical and technical monitoring systems) and Konnex (an open standard for commercial and domestic building automation). Making the electrical department smart causes to reduce the required power from the main grid. Hence, to achieve the aims, results have been investigated in two modes. Initially, the real-time mode based on the SCADA system, which reveals real daily power consumption and production of different sources and loads. Next, the simulation part is assigned to shows the behavior of the main grid, loads and BESS charging and discharging based on energy management system. Finally, the proposed model has been examined in different scenarios and evaluated from the economic aspect

    Influence of LV Neutral Grounding on Global Earthing Systems

    Get PDF
    International Standards define a Global Earthing System as an earthing net created interconnecting local Earthing Systems (generally through the shield of MV cables and/or bare buried conductors). In Italy, the regulatory authority for electricity and gas requires distributors to guarantee the electrical continuity of LV neutral conductor. This requirement has led to the standard practice of realizing “reinforcement groundings” along the LV neutral conductor path and at users' delivery cabinet. Moreover, in urban high-load scenarios (prime candidates to be part of a Global Earthing System), it is common that LV distribution scheme creates, through neutral conductors, an effective connection between grounding systems of MV/LV substations, modifying Global Earthing System consistency. The aim of this paper is to evaluate the effect, in terms of electrical safety, of the aforementioned LV neutral distribution scheme when an MV-side fault to ground occurs. For this purpose, simulations are carried out on a realistic urban test case and suitable evaluation indexes are proposed
    corecore